10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What happens when you try and fit the triomino pieces into these two grids?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different rhythms can you make by putting two drums on the wheel?

How many trains can you make which are the same length as Matt's, using rods that are identical?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

How many models can you find which obey these rules?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you use the information to find out which cards I have used?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How many different triangles can you make on a circular pegboard that has nine pegs?