Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How many models can you find which obey these rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

These two group activities use mathematical reasoning - one is numerical, one geometric.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

What happens when you try and fit the triomino pieces into these two grids?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

An activity making various patterns with 2 x 1 rectangular tiles.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Investigate the different ways you could split up these rooms so that you have double the number.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.