Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many models can you find which obey these rules?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What happens when you try and fit the triomino pieces into these two grids?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

How many different rhythms can you make by putting two drums on the wheel?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

An activity making various patterns with 2 x 1 rectangular tiles.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

These practical challenges are all about making a 'tray' and covering it with paper.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

My coat has three buttons. How many ways can you find to do up all the buttons?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?