10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many models can you find which obey these rules?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

These practical challenges are all about making a 'tray' and covering it with paper.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What happens when you try and fit the triomino pieces into these two grids?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different rhythms can you make by putting two drums on the wheel?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.