10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Try this matching game which will help you recognise different ways of saying the same time interval.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What happens when you try and fit the triomino pieces into these two grids?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different rhythms can you make by putting two drums on the wheel?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you find all the different ways of lining up these Cuisenaire rods?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

An activity making various patterns with 2 x 1 rectangular tiles.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many trains can you make which are the same length as Matt's, using rods that are identical?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

In this matching game, you have to decide how long different events take.