There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

How many possible necklaces can you find? And how do you know you've found them all?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

What could the half time scores have been in these Olympic hockey matches?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

My coat has three buttons. How many ways can you find to do up all the buttons?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?