Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

What is the best way to shunt these carriages so that each train can continue its journey?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

An activity making various patterns with 2 x 1 rectangular tiles.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What happens when you try and fit the triomino pieces into these two grids?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different rhythms can you make by putting two drums on the wheel?

These practical challenges are all about making a 'tray' and covering it with paper.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Use the clues about the symmetrical properties of these letters to place them on the grid.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

How many different triangles can you make on a circular pegboard that has nine pegs?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.