In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Find all the numbers that can be made by adding the dots on two dice.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This dice train has been made using specific rules. How many different trains can you make?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you find all the different ways of lining up these Cuisenaire rods?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

What happens when you try and fit the triomino pieces into these two grids?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!