How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

This train line has two tracks which cross at different points. Can you find all the routes that end at Cheston?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Investigate the different ways you could split up these rooms so that you have double the number.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

An investigation that gives you the opportunity to make and justify predictions.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Find out what a "fault-free" rectangle is and try to make some of your own.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.