This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Find all the numbers that can be made by adding the dots on two dice.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?