If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Find all the numbers that can be made by adding the dots on two dice.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge is about finding the difference between numbers which have the same tens digit.

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you use the information to find out which cards I have used?

My coat has three buttons. How many ways can you find to do up all the buttons?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?