Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Number problems at primary level that require careful consideration.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

What two-digit numbers can you make with these two dice? What can't you make?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

This challenge is about finding the difference between numbers which have the same tens digit.

What happens when you round these three-digit numbers to the nearest 100?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you find the chosen number from the grid using the clues?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you make square numbers by adding two prime numbers together?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!