How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Investigate the different ways you could split up these rooms so that you have double the number.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

What could the half time scores have been in these Olympic hockey matches?

My coat has three buttons. How many ways can you find to do up all the buttons?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.