The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

An investigation that gives you the opportunity to make and justify predictions.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Try this matching game which will help you recognise different ways of saying the same time interval.

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

In this matching game, you have to decide how long different events take.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

How many possible necklaces can you find? And how do you know you've found them all?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Number problems at primary level that require careful consideration.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?