This activity investigates how you might make squares and pentominoes from Polydron.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you draw a square in which the perimeter is numerically equal to the area?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

An activity making various patterns with 2 x 1 rectangular tiles.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.