This activity investigates how you might make squares and pentominoes from Polydron.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Can you draw a square in which the perimeter is numerically equal to the area?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you find all the different ways of lining up these Cuisenaire rods?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

How many different triangles can you make on a circular pegboard that has nine pegs?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many models can you find which obey these rules?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.