Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What happens when you try and fit the triomino pieces into these two grids?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

These practical challenges are all about making a 'tray' and covering it with paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different rhythms can you make by putting two drums on the wheel?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many trains can you make which are the same length as Matt's, using rods that are identical?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you find all the different ways of lining up these Cuisenaire rods?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you draw a square in which the perimeter is numerically equal to the area?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

An activity making various patterns with 2 x 1 rectangular tiles.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?