Can you draw a square in which the perimeter is numerically equal to the area?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

This activity investigates how you might make squares and pentominoes from Polydron.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

An investigation that gives you the opportunity to make and justify predictions.

These practical challenges are all about making a 'tray' and covering it with paper.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

How many different triangles can you make on a circular pegboard that has nine pegs?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many trains can you make which are the same length as Matt's, using rods that are identical?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?