How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

How many different triangles can you make on a circular pegboard that has nine pegs?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How many trains can you make which are the same length as Matt's, using rods that are identical?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What happens when you try and fit the triomino pieces into these two grids?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you find all the different ways of lining up these Cuisenaire rods?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many different rhythms can you make by putting two drums on the wheel?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the different ways you could split up these rooms so that you have double the number.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you find all the different triangles on these peg boards, and find their angles?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many models can you find which obey these rules?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Try out the lottery that is played in a far-away land. What is the chance of winning?