How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

How many different shapes can you make by putting four right- angled isosceles triangles together?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many different triangles can you make on a circular pegboard that has nine pegs?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

What happens when you try and fit the triomino pieces into these two grids?

How many different rhythms can you make by putting two drums on the wheel?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

An activity making various patterns with 2 x 1 rectangular tiles.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?