How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

How many different triangles can you make on a circular pegboard that has nine pegs?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How many different rhythms can you make by putting two drums on the wheel?

What happens when you try and fit the triomino pieces into these two grids?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Find out what a "fault-free" rectangle is and try to make some of your own.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

What is the best way to shunt these carriages so that each train can continue its journey?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you find all the different triangles on these peg boards, and find their angles?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?