Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What could the half time scores have been in these Olympic hockey matches?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you use the information to find out which cards I have used?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Number problems at primary level that require careful consideration.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.