Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What happens when you try and fit the triomino pieces into these two grids?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different rhythms can you make by putting two drums on the wheel?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you find all the different ways of lining up these Cuisenaire rods?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many different triangles can you make on a circular pegboard that has nine pegs?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?