Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Try this matching game which will help you recognise different ways of saying the same time interval.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

What happens when you try and fit the triomino pieces into these two grids?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Find out what a "fault-free" rectangle is and try to make some of your own.

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

An activity making various patterns with 2 x 1 rectangular tiles.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.