Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

An activity making various patterns with 2 x 1 rectangular tiles.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different rhythms can you make by putting two drums on the wheel?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?