In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This article for primary teachers suggests ways in which to help children become better at working systematically.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What happens when you try and fit the triomino pieces into these two grids?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find all the different triangles on these peg boards, and find their angles?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many different triangles can you make on a circular pegboard that has nine pegs?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenge extends the Plants investigation so now four or more children are involved.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

A challenging activity focusing on finding all possible ways of stacking rods.

Try this matching game which will help you recognise different ways of saying the same time interval.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Can you find all the different ways of lining up these Cuisenaire rods?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.