Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this matching game, you have to decide how long different events take.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Try this matching game which will help you recognise different ways of saying the same time interval.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

My coat has three buttons. How many ways can you find to do up all the buttons?

Investigate the different ways you could split up these rooms so that you have double the number.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Try out the lottery that is played in a far-away land. What is the chance of winning?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

What could the half time scores have been in these Olympic hockey matches?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?