Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you replace the letters with numbers? Is there only one solution in each case?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many trains can you make which are the same length as Matt's, using rods that are identical?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you find the chosen number from the grid using the clues?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

In this matching game, you have to decide how long different events take.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Have a go at balancing this equation. Can you find different ways of doing it?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

This dice train has been made using specific rules. How many different trains can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you work out some different ways to balance this equation?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!