Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Can you use the information to find out which cards I have used?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Number problems at primary level that require careful consideration.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you use this information to work out Charlie's house number?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.