In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you use the information to find out which cards I have used?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task follows on from Build it Up and takes the ideas into three dimensions!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Find all the numbers that can be made by adding the dots on two dice.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge is about finding the difference between numbers which have the same tens digit.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?