This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What happens when you try and fit the triomino pieces into these two grids?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

These practical challenges are all about making a 'tray' and covering it with paper.

In how many ways can you stack these rods, following the rules?

How many models can you find which obey these rules?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you find all the different ways of lining up these Cuisenaire rods?

An activity making various patterns with 2 x 1 rectangular tiles.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.