Using the statements, can you work out how many of each type of rabbit there are in these pens?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you find the chosen number from the grid using the clues?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Can you replace the letters with numbers? Is there only one solution in each case?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This challenge is about finding the difference between numbers which have the same tens digit.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.