Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge is about finding the difference between numbers which have the same tens digit.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This dice train has been made using specific rules. How many different trains can you make?

Can you find the chosen number from the grid using the clues?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you use this information to work out Charlie's house number?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you make square numbers by adding two prime numbers together?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?