Use these head, body and leg pieces to make Robot Monsters which are different heights.

This challenge is about finding the difference between numbers which have the same tens digit.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Find all the numbers that can be made by adding the dots on two dice.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you find out in which order the children are standing in this line?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.