The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find out what a "fault-free" rectangle is and try to make some of your own.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

A Sudoku with clues given as sums of entries.

What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This activity investigates how you might make squares and pentominoes from Polydron.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

How many models can you find which obey these rules?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A challenging activity focusing on finding all possible ways of stacking rods.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge is about finding the difference between numbers which have the same tens digit.

In this matching game, you have to decide how long different events take.

Try this matching game which will help you recognise different ways of saying the same time interval.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.