Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you find all the different ways of lining up these Cuisenaire rods?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many different rhythms can you make by putting two drums on the wheel?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Find all the numbers that can be made by adding the dots on two dice.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?