In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Investigate the different ways you could split up these rooms so that you have double the number.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many models can you find which obey these rules?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

This challenge extends the Plants investigation so now four or more children are involved.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?