Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

What two-digit numbers can you make with these two dice? What can't you make?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you replace the letters with numbers? Is there only one solution in each case?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you find the chosen number from the grid using the clues?

Try this matching game which will help you recognise different ways of saying the same time interval.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In this matching game, you have to decide how long different events take.

Can you find all the different ways of lining up these Cuisenaire rods?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How many trains can you make which are the same length as Matt's, using rods that are identical?