These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

In this matching game, you have to decide how long different events take.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Investigate the different ways you could split up these rooms so that you have double the number.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Can you find the chosen number from the grid using the clues?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

What happens when you try and fit the triomino pieces into these two grids?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?