Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

In this matching game, you have to decide how long different events take.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Can you find out in which order the children are standing in this line?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

My coat has three buttons. How many ways can you find to do up all the buttons?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Try this matching game which will help you recognise different ways of saying the same time interval.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This challenge is about finding the difference between numbers which have the same tens digit.

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?