Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Can you find out in which order the children are standing in this line?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How many models can you find which obey these rules?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?