Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

This challenge is about finding the difference between numbers which have the same tens digit.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you fill in the empty boxes in the grid with the right shape and colour?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Find all the numbers that can be made by adding the dots on two dice.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Find out what a "fault-free" rectangle is and try to make some of your own.

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Can you find out in which order the children are standing in this line?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

My coat has three buttons. How many ways can you find to do up all the buttons?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What happens when you try and fit the triomino pieces into these two grids?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Can you find all the different ways of lining up these Cuisenaire rods?