The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

My coat has three buttons. How many ways can you find to do up all the buttons?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Find out what a "fault-free" rectangle is and try to make some of your own.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find out in which order the children are standing in this line?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Try this matching game which will help you recognise different ways of saying the same time interval.

What two-digit numbers can you make with these two dice? What can't you make?

Can you find the chosen number from the grid using the clues?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?