If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

A Sudoku with clues given as sums of entries.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Try this matching game which will help you recognise different ways of saying the same time interval.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find all the numbers that can be made by adding the dots on two dice.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you fill in the empty boxes in the grid with the right shape and colour?

Can you find all the different triangles on these peg boards, and find their angles?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

My coat has three buttons. How many ways can you find to do up all the buttons?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

How many models can you find which obey these rules?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?