Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku with clues given as sums of entries.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Find all the numbers that can be made by adding the dots on two dice.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fill in the empty boxes in the grid with the right shape and colour?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find all the different triangles on these peg boards, and find their angles?

How many models can you find which obey these rules?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How many different rhythms can you make by putting two drums on the wheel?

My coat has three buttons. How many ways can you find to do up all the buttons?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?