A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you find out in which order the children are standing in this line?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Try this matching game which will help you recognise different ways of saying the same time interval.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

In this matching game, you have to decide how long different events take.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many trains can you make which are the same length as Matt's, using rods that are identical?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?