There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This challenge is about finding the difference between numbers which have the same tens digit.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you find all the different triangles on these peg boards, and find their angles?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

What happens when you try and fit the triomino pieces into these two grids?

How many different triangles can you make on a circular pegboard that has nine pegs?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?