In this matching game, you have to decide how long different events take.

Try this matching game which will help you recognise different ways of saying the same time interval.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

The pages of my calendar have got mixed up. Can you sort them out?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Try out the lottery that is played in a far-away land. What is the chance of winning?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

What could the half time scores have been in these Olympic hockey matches?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

My coat has three buttons. How many ways can you find to do up all the buttons?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?