This article for primary teachers suggests ways in which to help children become better at working systematically.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How many models can you find which obey these rules?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These two group activities use mathematical reasoning - one is numerical, one geometric.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

If you had 36 cubes, what different cuboids could you make?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different triangles can you make on a circular pegboard that has nine pegs?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Number problems at primary level that require careful consideration.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Find out what a "fault-free" rectangle is and try to make some of your own.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

An investigation that gives you the opportunity to make and justify predictions.