In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This article for primary teachers suggests ways in which to help children become better at working systematically.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you find all the different triangles on these peg boards, and find their angles?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Try this matching game which will help you recognise different ways of saying the same time interval.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many different triangles can you make on a circular pegboard that has nine pegs?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different rhythms can you make by putting two drums on the wheel?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?