Use the diagram to investigate the classical Pythagorean means.

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

For any right-angled triangle find the radii of the three escribed circles touching the sides of the triangle externally.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Imagine a rectangular tray lying flat on a table. Suppose that a plate lies on the tray and rolls around, in contact with the sides as it rolls. What can we say about the motion?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you describe this route to infinity? Where will the arrows take you next?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

Small circles nestle under touching parent circles when they sit on the axis at neighbouring points in a Farey sequence.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

Can you find a rule which relates triangular numbers to square numbers?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

What can you see? What do you notice? What questions can you ask?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A circular plate rolls inside a rectangular tray making five circuits and rotating about its centre seven times. Find the dimensions of the tray.

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?