Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

For any right-angled triangle find the radii of the three escribed circles touching the sides of the triangle externally.

In how many different ways can I colour the five edges of a pentagon red, blue and green so that no two adjacent edges are the same colour?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

See if you can anticipate successive 'generations' of the two animals shown here.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

Imagine a rectangular tray lying flat on a table. Suppose that a plate lies on the tray and rolls around, in contact with the sides as it rolls. What can we say about the motion?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

A circular plate rolls inside a rectangular tray making five circuits and rotating about its centre seven times. Find the dimensions of the tray.

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

A triangle PQR, right angled at P, slides on a horizontal floor with Q and R in contact with perpendicular walls. What is the locus of P?

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design. Coins inserted into the machine slide down a chute into the machine and a drink is duly. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .

Small circles nestle under touching parent circles when they sit on the axis at neighbouring points in a Farey sequence.

Use the diagram to investigate the classical Pythagorean means.

In this problem we see how many pieces we can cut a cube of cheese into using a limited number of slices. How many pieces will you be able to make?

Takes you through the systematic way in which you can begin to solve a mixed up Cubic Net. How close will you come to a solution?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.