A circle is inscribed in an equilateral triangle. Smaller circles touch it and the sides of the triangle, the process continuing indefinitely. What is the sum of the areas of all the circles?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

What can you see? What do you notice? What questions can you ask?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

To avoid losing think of another very well known game where the patterns of play are similar.

Use the diagram to investigate the classical Pythagorean means.

Imagine a rectangular tray lying flat on a table. Suppose that a plate lies on the tray and rolls around, in contact with the sides as it rolls. What can we say about the motion?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Small circles nestle under touching parent circles when they sit on the axis at neighbouring points in a Farey sequence.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which relates triangular numbers to square numbers?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

See if you can anticipate successive 'generations' of the two animals shown here.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Can you find a rule which connects consecutive triangular numbers?

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

The net of a cube is to be cut from a sheet of card 100 cm square. What is the maximum volume cube that can be made from a single piece of card?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

For any right-angled triangle find the radii of the three escribed circles touching the sides of the triangle externally.

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

Can you describe this route to infinity? Where will the arrows take you next?

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

A circular plate rolls inside a rectangular tray making five circuits and rotating about its centre seven times. Find the dimensions of the tray.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.