Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

What is the shape of wrapping paper that you would need to completely wrap this model?

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

In how many ways can you fit all three pieces together to make shapes with line symmetry?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

What can you see? What do you notice? What questions can you ask?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?