Search by Topic

Resources tagged with Visualising similar to Isometric Drawing:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Bent Out of Shape

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

An introduction to bond angle geometry.

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Air Nets

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

problem icon

Shaping the Universe II - the Solar System

Stage: 3 and 4

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

problem icon

Efficient Packing

Stage: 4 Challenge Level: Challenge Level:1

How efficiently can you pack together disks?

problem icon

Shaping the Universe I - Planet Earth

Stage: 3 and 4

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

problem icon

Packing 3D Shapes

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What 3D shapes occur in nature. How efficiently can you pack these shapes together?

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

problem icon

Take Ten

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

problem icon

Icosian Game

Stage: 3 Challenge Level: Challenge Level:1

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

problem icon

Soma - So Good

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you mentally fit the 7 SOMA pieces together to make a cube? Can you do it in more than one way?

problem icon

The Perforated Cube

Stage: 4 Challenge Level: Challenge Level:1

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

problem icon

Christmas Boxes

Stage: 3 Challenge Level: Challenge Level:1

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

problem icon

Like a Circle in a Spiral

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

problem icon

Nine Colours

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

problem icon

Circuit Training

Stage: 4 Challenge Level: Challenge Level:1

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

problem icon

More Pebbles

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Have a go at this 3D extension to the Pebbles problem.

problem icon

All Tied Up

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

problem icon

Square It

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

problem icon

The Spider and the Fly

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Floating in Space

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

problem icon

Cubic Net

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Changing Places

Stage: 4 Challenge Level: Challenge Level:1

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

problem icon

Sliced

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

problem icon

Khun Phaen Escapes to Freedom

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

problem icon

Inside Out

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Wari

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Linkage

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Tied Up

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

problem icon

Rolling Around

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

problem icon

Weighty Problem

Stage: 3 Challenge Level: Challenge Level:1

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

problem icon

Icosagram

Stage: 3 Challenge Level: Challenge Level:1

Draw a pentagon with all the diagonals. This is called a pentagram. How many diagonals are there? How many diagonals are there in a hexagram, heptagram, ... Does any pattern occur when looking at. . . .

problem icon

Rolling Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Frogs

Stage: 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

One and Three

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Framed

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .