# Search by Topic

#### Resources tagged with Visualising similar to Cyclic Quadrilaterals:

Filter by: Content type:
Stage:
Challenge level:

### AMGM

##### Stage: 4 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

### Natural Sum

##### Stage: 4 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

### Picture Story

##### Stage: 4 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

### Tessellating Hexagons

##### Stage: 3 Challenge Level:

Which hexagons tessellate?

### Rolling Coins

##### Stage: 4 Challenge Level:

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

### How Many Dice?

##### Stage: 3 Challenge Level:

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

### Three Frogs

##### Stage: 4 Challenge Level:

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

### Convex Polygons

##### Stage: 3 Challenge Level:

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### Yih or Luk Tsut K'i or Three Men's Morris

##### Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

### Rotating Triangle

##### Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

### Proximity

##### Stage: 4 Challenge Level:

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

### You Owe Me Five Farthings, Say the Bells of St Martin's

##### Stage: 3 Challenge Level:

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

### Triangles Within Pentagons

##### Stage: 4 Challenge Level:

Show that all pentagonal numbers are one third of a triangular number.

### Pattern Power

##### Stage: 1, 2 and 3

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

### Cutting a Cube

##### Stage: 3 Challenge Level:

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

### Threesomes

##### Stage: 3 Challenge Level:

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

### Squares, Squares and More Squares

##### Stage: 3 Challenge Level:

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

### Paving Paths

##### Stage: 3 Challenge Level:

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

### A Tilted Square

##### Stage: 4 Challenge Level:

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

### Seven Squares

##### Stage: 3 Challenge Level:

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

### Partly Painted Cube

##### Stage: 4 Challenge Level:

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

### Christmas Chocolates

##### Stage: 3 Challenge Level:

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

### Concrete Wheel

##### Stage: 3 Challenge Level:

A huge wheel is rolling past your window. What do you see?

### Cube Paths

##### Stage: 3 Challenge Level:

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

### The Old Goats

##### Stage: 3 Challenge Level:

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

### Hidden Rectangles

##### Stage: 3 Challenge Level:

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

### Königsberg

##### Stage: 3 Challenge Level:

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

### Tourism

##### Stage: 3 Challenge Level:

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

### Konigsberg Plus

##### Stage: 3 Challenge Level:

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

### Painted Cube

##### Stage: 3 Challenge Level:

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

##### Stage: 3 Challenge Level:

Can you mark 4 points on a flat surface so that there are only two different distances between them?

### Seven Squares - Group-worthy Task

##### Stage: 3 Challenge Level:

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

### Triangles Within Triangles

##### Stage: 4 Challenge Level:

Can you find a rule which connects consecutive triangular numbers?

### Cubes Within Cubes Revisited

##### Stage: 3 Challenge Level:

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

### Picturing Square Numbers

##### Stage: 3 Challenge Level:

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

### Picturing Triangle Numbers

##### Stage: 3 Challenge Level:

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

### When Will You Pay Me? Say the Bells of Old Bailey

##### Stage: 3 Challenge Level:

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

### Clocked

##### Stage: 3 Challenge Level:

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

### Trice

##### Stage: 3 Challenge Level:

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

### Tied Up

##### Stage: 3 Challenge Level:

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

### Icosagram

##### Stage: 3 Challenge Level:

Draw a pentagon with all the diagonals. This is called a pentagram. How many diagonals are there? How many diagonals are there in a hexagram, heptagram, ... Does any pattern occur when looking at. . . .

### Weighty Problem

##### Stage: 3 Challenge Level:

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

### Route to Infinity

##### Stage: 3 Challenge Level:

Can you describe this route to infinity? Where will the arrows take you next?

### Painting Cubes

##### Stage: 3 Challenge Level:

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

### Euromaths

##### Stage: 3 Challenge Level:

How many ways can you write the word EUROMATHS by starting at the top left hand corner and taking the next letter by stepping one step down or one step to the right in a 5x5 array?

### Getting an Angle

##### Stage: 3 Challenge Level:

How can you make an angle of 60 degrees by folding a sheet of paper twice?

### Can You Explain Why?

##### Stage: 3 Challenge Level:

Can you explain why it is impossible to construct this triangle?

### Steel Cables

##### Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

### Intersecting Circles

##### Stage: 3 Challenge Level:

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?