Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

What can you see? What do you notice? What questions can you ask?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Show that all pentagonal numbers are one third of a triangular number.

Square It game for an adult and child. Can you come up with a way of always winning this game?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Can you find a rule which relates triangular numbers to square numbers?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you find a rule which connects consecutive triangular numbers?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?