Search by Topic

Resources tagged with Visualising similar to Sharp Corners:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which hexagons tessellate?

problem icon

Tied Up

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

problem icon

On Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

On a clock the three hands - the second, minute and hour hands - are on the same axis. How often in a 24 hour day will the second hand be parallel to either of the two other hands?

problem icon

Platonic Planet

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

problem icon

Semi-regular Tessellations

Stage: 3 Challenge Level: Challenge Level:1

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

problem icon

Right Time

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

problem icon

All Tied Up

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

problem icon

Counting Triangles

Stage: 3 Challenge Level: Challenge Level:1

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

problem icon

Like a Circle in a Spiral

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

problem icon

Triangle Inequality

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

problem icon

Spotting the Loophole

Stage: 4 Challenge Level: Challenge Level:1

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

problem icon

Floating in Space

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

problem icon

Triangular Tantaliser

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

problem icon

Can You Explain Why?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain why it is impossible to construct this triangle?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Trice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

problem icon

Framed

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

problem icon

Take Ten

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

problem icon

Muggles Magic

Stage: 3 Challenge Level: Challenge Level:1

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

problem icon

Linkage

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

problem icon

Charting Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Getting an Angle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How can you make an angle of 60 degrees by folding a sheet of paper twice?

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Rolling Around

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

problem icon

Tilting Triangles

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

problem icon

Charting More Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Rolling Coins

Stage: 4 Challenge Level: Challenge Level:1

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

problem icon

Efficient Packing

Stage: 4 Challenge Level: Challenge Level:1

How efficiently can you pack together disks?

problem icon

Chords

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

problem icon

Dissect

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

problem icon

Star Gazing

Stage: 4 Challenge Level: Challenge Level:1

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

problem icon

LOGO Challenge - Circles as Animals

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

See if you can anticipate successive 'generations' of the two animals shown here.

problem icon

Just Opposite

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

problem icon

Rotating Triangle

Stage: 3 and 4 Challenge Level: Challenge Level:1

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

problem icon

Corridors

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

problem icon

A Problem of Time

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider a watch face which has identical hands and identical marks for the hours. It is opposite to a mirror. When is the time as read direct and in the mirror exactly the same between 6 and 7?

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Triangles in the Middle

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

problem icon

Speeding Boats

Stage: 4 Challenge Level: Challenge Level:1

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

problem icon

Keep Your Distance

Stage: 3 Challenge Level: Challenge Level:1

Can you mark 4 points on a flat surface so that there are only two different distances between them?

problem icon

Three Frogs

Stage: 4 Challenge Level: Challenge Level:1

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Troublesome Dice

Stage: 3 Challenge Level: Challenge Level:1

When dice land edge-up, we usually roll again. But what if we didn't...?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .