Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you describe this route to infinity? Where will the arrows take you next?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

If you move the tiles around, can you make squares with different coloured edges?

Can you make a tetrahedron whose faces all have the same perimeter?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Can you find a way of representing these arrangements of balls?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

What is the shape of wrapping paper that you would need to completely wrap this model?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

How many different symmetrical shapes can you make by shading triangles or squares?

Can you find a rule which connects consecutive triangular numbers?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you find a rule which relates triangular numbers to square numbers?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .